scran_pca
Principal component analysis for single-cell data
|
Results of blocked_pca()
.
More...
#include <blocked_pca.hpp>
Public Attributes | |
EigenMatrix_ | components |
EigenVector_ | variance_explained |
EigenVector_::Scalar | total_variance = 0 |
EigenMatrix_ | rotation |
EigenMatrix_ | center |
EigenVector_ | scale |
bool | converged = false |
Results of blocked_pca()
.
EigenMatrix_ | A floating-point Eigen::Matrix class. |
EigenVector_ | A floating-point Eigen::Vector class. |
EigenMatrix_ scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::center |
Centering matrix. Each row corresponds to a block and each column corresponds to a gene. Each entry contains the mean for a particular gene in the corresponding block.
EigenMatrix_ scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::components |
Matrix of principal components. By default, each row corresponds to a PC while each column corresponds to a cell in the input matrix. If BlockedPcaOptions::transpose = false
, rows are cells instead. The number of PCs is determined by BlockedPcaOptions::number
.
bool scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::converged = false |
Whether the algorithm converged.
EigenMatrix_ scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::rotation |
Rotation matrix. Each row corresponds to a gene while each column corresponds to a PC. The number of PCs is determined by BlockedPcaOptions::number
.
EigenVector_ scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::scale |
Scaling vector, only returned if BlockedPcaOptions::scale = true
. Each entry corresponds to a row in the input matrix and contains the scaling factor used to divide that gene's values if BlockedPcaOptions::scale = true
.
EigenVector_::Scalar scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::total_variance = 0 |
Total variance of the dataset (possibly after scaling, if BlockedPcaOptions::scale = true
). This can be used to divide variance_explained
to obtain the percentage of variance explained.
EigenVector_ scran_pca::BlockedPcaResults< EigenMatrix_, EigenVector_ >::variance_explained |
Variance explained by each PC. Each entry corresponds to a column in components
and is in decreasing order. The length of the vector is determined by BlockedPcaOptions::number
.