scran_pca
Principal component analysis for single-cell data
|
Options for simple_pca()
.
More...
#include <simple_pca.hpp>
Public Attributes | |
int | number = 25 |
bool | scale = false |
bool | transpose = true |
int | num_threads = 1 |
bool | realize_matrix = true |
irlba::Options | irlba_options |
Options for simple_pca()
.
irlba::Options scran_pca::SimplePcaOptions::irlba_options |
Further options to pass to irlba::compute()
.
int scran_pca::SimplePcaOptions::num_threads = 1 |
Number of threads to use. The parallelization scheme is determined by tatami::parallelize()
and irlba::parallelize()
.
int scran_pca::SimplePcaOptions::number = 25 |
Number of PCs to compute. This should be no greater than the maximum number of PCs, i.e., the smaller dimension of the input matrix; otherwise, only the maximum number of PCs will be reported in the results.
bool scran_pca::SimplePcaOptions::realize_matrix = true |
Whether to realize tatami::Matrix
objects into an appropriate in-memory format before PCA. This is typically faster but increases memory usage.
bool scran_pca::SimplePcaOptions::scale = false |
Should genes be scaled to unit variance? Genes with zero variance are ignored.
bool scran_pca::SimplePcaOptions::transpose = true |
Should the PC matrix be transposed on output? If true
, the output matrix is column-major with cells in the columns, which is compatible with downstream libscran steps.