scran_pca
Principal component analysis for single-cell data
Loading...
Searching...
No Matches
Public Attributes | List of all members
scran_pca::SimplePcaOptions Struct Reference

Options for simple_pca(). More...

#include <simple_pca.hpp>

Public Attributes

int number = 25
 
bool scale = false
 
bool transpose = true
 
int num_threads = 1
 
bool realize_matrix = true
 
irlba::Options irlba_options
 

Detailed Description

Options for simple_pca().

Member Data Documentation

◆ irlba_options

irlba::Options scran_pca::SimplePcaOptions::irlba_options

Further options to pass to irlba::compute().

◆ num_threads

int scran_pca::SimplePcaOptions::num_threads = 1

Number of threads to use. The parallelization scheme is determined by tatami::parallelize() and irlba::parallelize().

◆ number

int scran_pca::SimplePcaOptions::number = 25

Number of PCs to compute. This should be no greater than the maximum number of PCs, i.e., the smaller dimension of the input matrix; otherwise, only the maximum number of PCs will be reported in the results.

◆ realize_matrix

bool scran_pca::SimplePcaOptions::realize_matrix = true

Whether to realize tatami::Matrix objects into an appropriate in-memory format before PCA. This is typically faster but increases memory usage.

◆ scale

bool scran_pca::SimplePcaOptions::scale = false

Should genes be scaled to unit variance? Genes with zero variance are ignored.

◆ transpose

bool scran_pca::SimplePcaOptions::transpose = true

Should the PC matrix be transposed on output? If true, the output matrix is column-major with cells in the columns, which is compatible with downstream libscran steps.


The documentation for this struct was generated from the following file: