scran_pca
Principal component analysis for single-cell data
|
Options for simple_pca()
.
More...
#include <simple_pca.hpp>
Public Attributes | |
int | number = 25 |
bool | scale = false |
bool | transpose = true |
int | num_threads = 1 |
bool | realize_matrix = true |
irlba::Options | irlba_options |
Options for simple_pca()
.
irlba::Options scran_pca::SimplePcaOptions::irlba_options |
Further options to pass to irlba::compute()
.
int scran_pca::SimplePcaOptions::num_threads = 1 |
Number of threads to use. The parallelization scheme is determined by tatami::parallelize()
and irlba::parallelize()
.
int scran_pca::SimplePcaOptions::number = 25 |
Number of PCs to compute. This should be no greater than the maximum number of PCs, i.e., the smaller dimension of the input matrix, otherwise an error will be thrown. (This error can be avoided by setting irlba::Options::cap_number = true
in SimplePcaOptions::irlba_options
, in which case only the maximum number of PCs will be reported in the results.)
bool scran_pca::SimplePcaOptions::realize_matrix = true |
Whether to realize tatami::Matrix
objects into an appropriate in-memory format before PCA. This is typically faster but increases memory usage.
bool scran_pca::SimplePcaOptions::scale = false |
Should genes be scaled to unit variance? Genes with zero variance are ignored.
bool scran_pca::SimplePcaOptions::transpose = true |
Should the PC matrix be transposed on output? If true
, the output matrix is column-major with cells in the columns, which is compatible with downstream libscran steps.