scran_pca
Principal component analysis for single-cell data
Loading...
Searching...
No Matches
Public Attributes | List of all members
scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ > Struct Template Reference

Results of simple_pca(). More...

#include <simple_pca.hpp>

Public Attributes

EigenMatrix_ components
 
EigenVector_ variance_explained
 
EigenVector_::Scalar total_variance = 0
 
EigenMatrix_ rotation
 
EigenVector_ center
 
EigenVector_ scale
 
bool converged = false
 

Detailed Description

template<typename EigenMatrix_, typename EigenVector_>
struct scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >

Results of simple_pca().

Template Parameters
EigenMatrix_A floating-point Eigen::Matrix class.
EigenVector_A floating-point Eigen::Vector class.

Member Data Documentation

◆ center

template<typename EigenMatrix_ , typename EigenVector_ >
EigenVector_ scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::center

Centering vector. Each entry corresponds to a row in the matrix and contains the mean value for that feature.

◆ components

template<typename EigenMatrix_ , typename EigenVector_ >
EigenMatrix_ scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::components

Matrix of principal components. By default, each row corresponds to a PC while each column corresponds to a cell in the input matrix. If SimplePcaOptions::transpose = false, rows are cells instead. The number of PCs is determined by SimplePcaOptions::number.

◆ converged

template<typename EigenMatrix_ , typename EigenVector_ >
bool scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::converged = false

Whether the algorithm converged.

◆ rotation

template<typename EigenMatrix_ , typename EigenVector_ >
EigenMatrix_ scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::rotation

Rotation matrix. Each row corresponds to a feature while each column corresponds to a PC. The number of PCs is determined by SimplePcaOptions::number.

◆ scale

template<typename EigenMatrix_ , typename EigenVector_ >
EigenVector_ scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::scale

Scaling vector, only returned if SimplePcaOptions::scale = true. Each entry corresponds to a row in the matrix and contains the scaling factor used to divide the feature values if SimplePcaOptions::scale = true.

◆ total_variance

template<typename EigenMatrix_ , typename EigenVector_ >
EigenVector_::Scalar scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::total_variance = 0

Total variance of the dataset (possibly after scaling, if SimplePcaOptions::scale = true). This can be used to divide variance_explained to obtain the percentage of variance explained.

◆ variance_explained

template<typename EigenMatrix_ , typename EigenVector_ >
EigenVector_ scran_pca::SimplePcaResults< EigenMatrix_, EigenVector_ >::variance_explained

Variance explained by each PC. Each entry corresponds to a column in components and is in decreasing order.


The documentation for this struct was generated from the following file: